首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1917篇
  免费   57篇
  国内免费   21篇
安全科学   83篇
废物处理   71篇
环保管理   435篇
综合类   192篇
基础理论   548篇
环境理论   5篇
污染及防治   446篇
评价与监测   131篇
社会与环境   58篇
灾害及防治   26篇
  2023年   19篇
  2022年   33篇
  2021年   48篇
  2020年   26篇
  2019年   42篇
  2018年   55篇
  2017年   62篇
  2016年   81篇
  2015年   51篇
  2014年   66篇
  2013年   157篇
  2012年   88篇
  2011年   134篇
  2010年   86篇
  2009年   101篇
  2008年   115篇
  2007年   110篇
  2006年   110篇
  2005年   62篇
  2004年   53篇
  2003年   65篇
  2002年   55篇
  2001年   32篇
  2000年   41篇
  1999年   21篇
  1998年   17篇
  1997年   12篇
  1996年   21篇
  1995年   18篇
  1994年   23篇
  1993年   11篇
  1992年   11篇
  1991年   10篇
  1990年   9篇
  1989年   13篇
  1988年   13篇
  1987年   12篇
  1986年   12篇
  1985年   9篇
  1984年   7篇
  1983年   11篇
  1982年   13篇
  1981年   15篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1975年   4篇
  1969年   4篇
  1958年   2篇
排序方式: 共有1995条查询结果,搜索用时 34 毫秒
21.
Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10–164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15–120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.  相似文献   
22.
Flares are important safety devices for pressure relief; at the same time, flares are a significant point source for soot and highly reactive volatile organic compounds (HRVOCs). Currently, simple guidelines for flare operations to maintain high combustion efficiency (CE) remain elusive. This paper fills the gap by investigating the characteristics of the incipient smoke point (ISP), which is widely recognized as the condition for good combustion. This study characterizes the ISP in terms of 100–% combustion inefficiency (CE), percent opacity, absorbance, air assist, steam assist, air equivalence ratio, steam equivalence ratio, exit velocity, vent gas net heating value, and combustion zone net heating value. Flame lengths were calculated for buoyant and momentum-dominated plumes under calm and windy conditions at stable and neutral atmosphere. Opacity was calculated using the Beer–Lambert law based on soot concentration, flame diameter, and mass-specific extinction cross section of soot. The calculated opacity and absorbance were found to be lognormally distributed. Linear relations were established for soot yield versus absorptivity with R2 > 0.99 and power-law relations for opacity versus soot emission rate with R2 ≥ 0.97 for steam-assisted, air-assisted, and nonassisted flares. The characterized steam/air assists, combustion zone/vent gas heating values, exit velocity, steam, and air equivalence ratios for the incipient smoke point will serve as a useful guideline for efficient flare operations.

Implications: A Recent EPA rule requires an evaluation of visible emissions in terms of opacity in compliance with the standards. In this paper, visible emissions such as soot particles are characterized in terms of opacity at ISP. Since ISP is widely recognized as most efficient flare operation for high combustion efficiency (CE)/destruction efficiency (DE) with initial soot particles formed in the flame, this characterization provides a useful guideline for flare operators in the refinery, oil and gas, and chemical industries to sustain smokeless and high combustion efficiency flaring in compliance with recent EPA regulations, in addition to protecting the environment.  相似文献   

23.

The clean air interstate rule (CAIR) was a regional cap-and-trade program announced in 2005 which covered 27 eastern US states and sought to reduce sulfur dioxide emissions from coal-fired power plants. The rule was later vacated after a court found that the non-targeted design of the program did not comply with the Clean Air Act provision to regulate interstate air pollution. Using a custom air pollution dispersion model, I calculate the interstate SO2 pollution from 493 coal-fired power plants across the United States between 1997 and 2020. In a difference-in-differences setup with plants not covered by CAIR in the control group, I estimate the treatment effect of the program on overall- and cross-border SO2 emissions and find a 24% reduction in overall emissions and reduces the risk that a plant violates air quality standards across state borders by 2–4%. I report evidence of heterogeneous treatment effects where the reduction in overall emissions attributed to CAIR is lower among plants transporting SO2 in excess of 1% of the National Air Quality Standards to another state.

  相似文献   
24.
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources.  相似文献   
25.
26.
Because conservation planners typically lack data on where species occur, environmental surrogates—including geophysical settings and climate types—have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within‐site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species’ environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change.  相似文献   
27.
Predicted increases in runoff of terrestrial dissolved organic matter (DOM) and sea surface temperatures implicate substantial changes in energy fluxes of coastal marine ecosystems. Despite marine bacteria being critical drivers of marine carbon cycling, knowledge of compositional responses within bacterioplankton communities to such disturbances is strongly limited. Using 16S rRNA gene pyrosequencing, we examined bacterioplankton population dynamics in Baltic Sea mesocosms with treatments combining terrestrial DOM enrichment and increased temperature. Among the 200 most abundant taxa, 62 % either increased or decreased in relative abundance under changed environmental conditions. For example, SAR11 and SAR86 populations proliferated in combined increased terrestrial DOM/temperature mesocosms, while the hgcI and CL500-29 clades (Actinobacteria) decreased in the same mesocosms. Bacteroidetes increased in both control mesocosms and in the combined increased terrestrial DOM/temperature mesocosms. These results indicate considerable and differential responses among distinct bacterial populations to combined climate change effects, emphasizing the potential of such effects to induce shifts in ecosystem function and carbon cycling in the future Baltic Sea.  相似文献   
28.
29.
The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1 % of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.  相似文献   
30.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号